3.322 \(\int \frac{\sqrt{a+c x^2}}{x^2 (d+e x)} \, dx\)

Optimal. Leaf size=105 \[ -\frac{\sqrt{a e^2+c d^2} \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{a+c x^2} \sqrt{a e^2+c d^2}}\right )}{d^2}+\frac{\sqrt{a} e \tanh ^{-1}\left (\frac{\sqrt{a+c x^2}}{\sqrt{a}}\right )}{d^2}-\frac{\sqrt{a+c x^2}}{d x} \]

[Out]

-(Sqrt[a + c*x^2]/(d*x)) - (Sqrt[c*d^2 + a*e^2]*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^2]*Sqrt[a + c*x^2])])/
d^2 + (Sqrt[a]*e*ArcTanh[Sqrt[a + c*x^2]/Sqrt[a]])/d^2

________________________________________________________________________________________

Rubi [A]  time = 0.166599, antiderivative size = 105, normalized size of antiderivative = 1., number of steps used = 15, number of rules used = 11, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.5, Rules used = {961, 277, 217, 206, 266, 50, 63, 208, 735, 844, 725} \[ -\frac{\sqrt{a e^2+c d^2} \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{a+c x^2} \sqrt{a e^2+c d^2}}\right )}{d^2}+\frac{\sqrt{a} e \tanh ^{-1}\left (\frac{\sqrt{a+c x^2}}{\sqrt{a}}\right )}{d^2}-\frac{\sqrt{a+c x^2}}{d x} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + c*x^2]/(x^2*(d + e*x)),x]

[Out]

-(Sqrt[a + c*x^2]/(d*x)) - (Sqrt[c*d^2 + a*e^2]*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^2]*Sqrt[a + c*x^2])])/
d^2 + (Sqrt[a]*e*ArcTanh[Sqrt[a + c*x^2]/Sqrt[a]])/d^2

Rule 961

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIn
tegrand[(d + e*x)^m*(f + g*x)^n*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] &&
NeQ[c*d^2 + a*e^2, 0] && (IntegerQ[p] || (ILtQ[m, 0] && ILtQ[n, 0])) &&  !(IGtQ[m, 0] || IGtQ[n, 0])

Rule 277

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^p)/(c*(m +
1)), x] - Dist[(b*n*p)/(c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] &&
IGtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1] &&  !ILtQ[(m + n*p + n + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 735

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(a + c*x^2)^p)/(
e*(m + 2*p + 1)), x] + Dist[(2*p)/(e*(m + 2*p + 1)), Int[(d + e*x)^m*Simp[a*e - c*d*x, x]*(a + c*x^2)^(p - 1),
 x], x] /; FreeQ[{a, c, d, e, m}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] && NeQ[m + 2*p + 1, 0] && ( !Ration
alQ[m] || LtQ[m, 1]) &&  !ILtQ[m + 2*p, 0] && IntQuadraticQ[a, 0, c, d, e, m, p, x]

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 725

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rubi steps

\begin{align*} \int \frac{\sqrt{a+c x^2}}{x^2 (d+e x)} \, dx &=\int \left (\frac{\sqrt{a+c x^2}}{d x^2}-\frac{e \sqrt{a+c x^2}}{d^2 x}+\frac{e^2 \sqrt{a+c x^2}}{d^2 (d+e x)}\right ) \, dx\\ &=\frac{\int \frac{\sqrt{a+c x^2}}{x^2} \, dx}{d}-\frac{e \int \frac{\sqrt{a+c x^2}}{x} \, dx}{d^2}+\frac{e^2 \int \frac{\sqrt{a+c x^2}}{d+e x} \, dx}{d^2}\\ &=\frac{e \sqrt{a+c x^2}}{d^2}-\frac{\sqrt{a+c x^2}}{d x}+\frac{c \int \frac{1}{\sqrt{a+c x^2}} \, dx}{d}-\frac{e \operatorname{Subst}\left (\int \frac{\sqrt{a+c x}}{x} \, dx,x,x^2\right )}{2 d^2}+\frac{e \int \frac{a e-c d x}{(d+e x) \sqrt{a+c x^2}} \, dx}{d^2}\\ &=-\frac{\sqrt{a+c x^2}}{d x}-\frac{c \int \frac{1}{\sqrt{a+c x^2}} \, dx}{d}+\frac{c \operatorname{Subst}\left (\int \frac{1}{1-c x^2} \, dx,x,\frac{x}{\sqrt{a+c x^2}}\right )}{d}-\frac{(a e) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+c x}} \, dx,x,x^2\right )}{2 d^2}+\left (c+\frac{a e^2}{d^2}\right ) \int \frac{1}{(d+e x) \sqrt{a+c x^2}} \, dx\\ &=-\frac{\sqrt{a+c x^2}}{d x}+\frac{\sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a+c x^2}}\right )}{d}-\frac{c \operatorname{Subst}\left (\int \frac{1}{1-c x^2} \, dx,x,\frac{x}{\sqrt{a+c x^2}}\right )}{d}-\frac{(a e) \operatorname{Subst}\left (\int \frac{1}{-\frac{a}{c}+\frac{x^2}{c}} \, dx,x,\sqrt{a+c x^2}\right )}{c d^2}+\left (-c-\frac{a e^2}{d^2}\right ) \operatorname{Subst}\left (\int \frac{1}{c d^2+a e^2-x^2} \, dx,x,\frac{a e-c d x}{\sqrt{a+c x^2}}\right )\\ &=-\frac{\sqrt{a+c x^2}}{d x}-\frac{\sqrt{c d^2+a e^2} \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{c d^2+a e^2} \sqrt{a+c x^2}}\right )}{d^2}+\frac{\sqrt{a} e \tanh ^{-1}\left (\frac{\sqrt{a+c x^2}}{\sqrt{a}}\right )}{d^2}\\ \end{align*}

Mathematica [A]  time = 0.249484, size = 178, normalized size = 1.7 \[ \frac{-\sqrt{a e^2+c d^2} \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{a+c x^2} \sqrt{a e^2+c d^2}}\right )-\frac{d \sqrt{a+c x^2}}{x}+\frac{\sqrt{a} \sqrt{c} d \sqrt{\frac{c x^2}{a}+1} \sinh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a}}\right )}{\sqrt{a+c x^2}}-\sqrt{c} d \tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a+c x^2}}\right )+\sqrt{a} e \tanh ^{-1}\left (\frac{\sqrt{a+c x^2}}{\sqrt{a}}\right )}{d^2} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + c*x^2]/(x^2*(d + e*x)),x]

[Out]

(-((d*Sqrt[a + c*x^2])/x) + (Sqrt[a]*Sqrt[c]*d*Sqrt[1 + (c*x^2)/a]*ArcSinh[(Sqrt[c]*x)/Sqrt[a]])/Sqrt[a + c*x^
2] - Sqrt[c]*d*ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]] - Sqrt[c*d^2 + a*e^2]*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 +
a*e^2]*Sqrt[a + c*x^2])] + Sqrt[a]*e*ArcTanh[Sqrt[a + c*x^2]/Sqrt[a]])/d^2

________________________________________________________________________________________

Maple [B]  time = 0.24, size = 486, normalized size = 4.6 \begin{align*}{\frac{e}{{d}^{2}}\sqrt{a}\ln \left ({\frac{1}{x} \left ( 2\,a+2\,\sqrt{a}\sqrt{c{x}^{2}+a} \right ) } \right ) }-{\frac{e}{{d}^{2}}\sqrt{c{x}^{2}+a}}+{\frac{e}{{d}^{2}}\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}}-{\frac{1}{d}\sqrt{c}\ln \left ({ \left ( -{\frac{cd}{e}}+ \left ({\frac{d}{e}}+x \right ) c \right ){\frac{1}{\sqrt{c}}}}+\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}} \right ) }-{\frac{ae}{{d}^{2}}\ln \left ({ \left ( 2\,{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+2\,\sqrt{{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}} \right ) \left ({\frac{d}{e}}+x \right ) ^{-1}} \right ){\frac{1}{\sqrt{{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}}}}-{\frac{c}{e}\ln \left ({ \left ( 2\,{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+2\,\sqrt{{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}} \right ) \left ({\frac{d}{e}}+x \right ) ^{-1}} \right ){\frac{1}{\sqrt{{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}}}}-{\frac{1}{adx} \left ( c{x}^{2}+a \right ) ^{{\frac{3}{2}}}}+{\frac{cx}{ad}\sqrt{c{x}^{2}+a}}+{\frac{1}{d}\sqrt{c}\ln \left ( x\sqrt{c}+\sqrt{c{x}^{2}+a} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+a)^(1/2)/x^2/(e*x+d),x)

[Out]

e/d^2*a^(1/2)*ln((2*a+2*a^(1/2)*(c*x^2+a)^(1/2))/x)-e/d^2*(c*x^2+a)^(1/2)+e/d^2*((d/e+x)^2*c-2*c*d/e*(d/e+x)+(
a*e^2+c*d^2)/e^2)^(1/2)-1/d*c^(1/2)*ln((-c*d/e+(d/e+x)*c)/c^(1/2)+((d/e+x)^2*c-2*c*d/e*(d/e+x)+(a*e^2+c*d^2)/e
^2)^(1/2))-e/d^2/((a*e^2+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2+c*d^2)/e^2-2*c*d/e*(d/e+x)+2*((a*e^2+c*d^2)/e^2)^(1/2)
*((d/e+x)^2*c-2*c*d/e*(d/e+x)+(a*e^2+c*d^2)/e^2)^(1/2))/(d/e+x))*a-1/e/((a*e^2+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2+
c*d^2)/e^2-2*c*d/e*(d/e+x)+2*((a*e^2+c*d^2)/e^2)^(1/2)*((d/e+x)^2*c-2*c*d/e*(d/e+x)+(a*e^2+c*d^2)/e^2)^(1/2))/
(d/e+x))*c-1/d/a/x*(c*x^2+a)^(3/2)+1/d*c/a*x*(c*x^2+a)^(1/2)+1/d*c^(1/2)*ln(x*c^(1/2)+(c*x^2+a)^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c x^{2} + a}}{{\left (e x + d\right )} x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)^(1/2)/x^2/(e*x+d),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^2 + a)/((e*x + d)*x^2), x)

________________________________________________________________________________________

Fricas [A]  time = 2.13652, size = 1326, normalized size = 12.63 \begin{align*} \left [\frac{\sqrt{a} e x \log \left (-\frac{c x^{2} + 2 \, \sqrt{c x^{2} + a} \sqrt{a} + 2 \, a}{x^{2}}\right ) + \sqrt{c d^{2} + a e^{2}} x \log \left (\frac{2 \, a c d e x - a c d^{2} - 2 \, a^{2} e^{2} -{\left (2 \, c^{2} d^{2} + a c e^{2}\right )} x^{2} - 2 \, \sqrt{c d^{2} + a e^{2}}{\left (c d x - a e\right )} \sqrt{c x^{2} + a}}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right ) - 2 \, \sqrt{c x^{2} + a} d}{2 \, d^{2} x}, \frac{\sqrt{a} e x \log \left (-\frac{c x^{2} + 2 \, \sqrt{c x^{2} + a} \sqrt{a} + 2 \, a}{x^{2}}\right ) - 2 \, \sqrt{-c d^{2} - a e^{2}} x \arctan \left (\frac{\sqrt{-c d^{2} - a e^{2}}{\left (c d x - a e\right )} \sqrt{c x^{2} + a}}{a c d^{2} + a^{2} e^{2} +{\left (c^{2} d^{2} + a c e^{2}\right )} x^{2}}\right ) - 2 \, \sqrt{c x^{2} + a} d}{2 \, d^{2} x}, -\frac{2 \, \sqrt{-a} e x \arctan \left (\frac{\sqrt{-a}}{\sqrt{c x^{2} + a}}\right ) - \sqrt{c d^{2} + a e^{2}} x \log \left (\frac{2 \, a c d e x - a c d^{2} - 2 \, a^{2} e^{2} -{\left (2 \, c^{2} d^{2} + a c e^{2}\right )} x^{2} - 2 \, \sqrt{c d^{2} + a e^{2}}{\left (c d x - a e\right )} \sqrt{c x^{2} + a}}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right ) + 2 \, \sqrt{c x^{2} + a} d}{2 \, d^{2} x}, -\frac{\sqrt{-a} e x \arctan \left (\frac{\sqrt{-a}}{\sqrt{c x^{2} + a}}\right ) + \sqrt{-c d^{2} - a e^{2}} x \arctan \left (\frac{\sqrt{-c d^{2} - a e^{2}}{\left (c d x - a e\right )} \sqrt{c x^{2} + a}}{a c d^{2} + a^{2} e^{2} +{\left (c^{2} d^{2} + a c e^{2}\right )} x^{2}}\right ) + \sqrt{c x^{2} + a} d}{d^{2} x}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)^(1/2)/x^2/(e*x+d),x, algorithm="fricas")

[Out]

[1/2*(sqrt(a)*e*x*log(-(c*x^2 + 2*sqrt(c*x^2 + a)*sqrt(a) + 2*a)/x^2) + sqrt(c*d^2 + a*e^2)*x*log((2*a*c*d*e*x
 - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2 - 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a))/(e^2
*x^2 + 2*d*e*x + d^2)) - 2*sqrt(c*x^2 + a)*d)/(d^2*x), 1/2*(sqrt(a)*e*x*log(-(c*x^2 + 2*sqrt(c*x^2 + a)*sqrt(a
) + 2*a)/x^2) - 2*sqrt(-c*d^2 - a*e^2)*x*arctan(sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^2 +
a^2*e^2 + (c^2*d^2 + a*c*e^2)*x^2)) - 2*sqrt(c*x^2 + a)*d)/(d^2*x), -1/2*(2*sqrt(-a)*e*x*arctan(sqrt(-a)/sqrt(
c*x^2 + a)) - sqrt(c*d^2 + a*e^2)*x*log((2*a*c*d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2 - 2*sqr
t(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a))/(e^2*x^2 + 2*d*e*x + d^2)) + 2*sqrt(c*x^2 + a)*d)/(d^2*x), -(s
qrt(-a)*e*x*arctan(sqrt(-a)/sqrt(c*x^2 + a)) + sqrt(-c*d^2 - a*e^2)*x*arctan(sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e
)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2 + (c^2*d^2 + a*c*e^2)*x^2)) + sqrt(c*x^2 + a)*d)/(d^2*x)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a + c x^{2}}}{x^{2} \left (d + e x\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+a)**(1/2)/x**2/(e*x+d),x)

[Out]

Integral(sqrt(a + c*x**2)/(x**2*(d + e*x)), x)

________________________________________________________________________________________

Giac [A]  time = 1.19735, size = 196, normalized size = 1.87 \begin{align*} -\frac{2 \, a \arctan \left (-\frac{\sqrt{c} x - \sqrt{c x^{2} + a}}{\sqrt{-a}}\right ) e}{\sqrt{-a} d^{2}} + \frac{2 \, a \sqrt{c}}{{\left ({\left (\sqrt{c} x - \sqrt{c x^{2} + a}\right )}^{2} - a\right )} d} + \frac{2 \,{\left (c d^{2} + a e^{2}\right )} \arctan \left (-\frac{{\left (\sqrt{c} x - \sqrt{c x^{2} + a}\right )} e + \sqrt{c} d}{\sqrt{-c d^{2} - a e^{2}}}\right )}{\sqrt{-c d^{2} - a e^{2}} d^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)^(1/2)/x^2/(e*x+d),x, algorithm="giac")

[Out]

-2*a*arctan(-(sqrt(c)*x - sqrt(c*x^2 + a))/sqrt(-a))*e/(sqrt(-a)*d^2) + 2*a*sqrt(c)/(((sqrt(c)*x - sqrt(c*x^2
+ a))^2 - a)*d) + 2*(c*d^2 + a*e^2)*arctan(-((sqrt(c)*x - sqrt(c*x^2 + a))*e + sqrt(c)*d)/sqrt(-c*d^2 - a*e^2)
)/(sqrt(-c*d^2 - a*e^2)*d^2)